In February this year, Penny Wong, the then climate change minister said: ‘Globally, 14 of the 15 warmest years on record occurred between 1995 and 2009’ and she argued that the Bureau of Meteorology had concluded that ‘2009 was the second hottest year in Australia on record and ended our hottest decade. In Australia, each decade since the 1940s has been warmer than the last.’

It is claims such as these that provide the justification for Australia putting a ‘price on carbon’ to reduce our emissions of carbon dioxide. However, as Professor Bob Carter explains, what Penny Wong said might be true, but in the debate about climate change the minister’s claims are meaningless. As Carter says ‘Minister Wong’s statement, and others like it, are scientifically trivial and appear to be deliberately intended to mislead. In reality it is no more significant that 14 of the last 15 years are the warmest since instrumental records began than it is that the hottest days of each year cluster around and shortly after midsummer’s day.’

That’s because we only have about 150 years of accurate, instrument-measured, temperature records. In the context of the history of the earth’s climate what’s occurred in the last few decades is not unusual. In the nineteenth and twentieth centuries temperatures increased following the ‘Little Ice Age’, successive phases of which lasted from roughly 1350 to 1860. The Little Ice Age followed the ‘Mediaeval Warm Period’ of 800 to 1000 AD. Reconstructed temperatures for the Mediaeval Warm Period are based upon proxy data such as tree ring analysis and various geochemical measurements, which imply that at many localities temperatures then were as warm or warmer than those of today. Similarly, during the ‘Holocene climatic optimum’ of several thousand years ago, temperatures were a degree or so warmer than they are now; during the last interglacial period 125,000 years ago temperatures were approximately two degrees warmer than now; and six million years ago, temperatures were about two to three degrees warmer than now.

None of this was mentioned by Penny Wong. Nor did she mention

John Roskam reviews: *Climate: The Counter Consensus*  
By Prof. Bob Carter  
(Stacey International, 2010, 200 pages)
that it is likely that global temperatures peaked in 1998 and started declining in 2002. The new minister for climate change, Greg Combet, hasn’t taken the trouble to talk about any of this either.

As we find out from Climate: The Counter Consensus there’s lots of other things we haven’t been told by those politicians who believe that humans are causing potentially catastrophic global warming and that therefore drastic action must be taken.

While the politicians are constantly telling the public ‘the science is settled’ and there’s a ‘consensus’, they have never dared inform the public of the basic facts of climate change. Thankfully it’s an omission rectified by Professor Carter.

Carbon dioxide, water vapour, methane, nitrous oxides, and ozone are called ‘greenhouse’ gases because they absorb heat and warm the atmosphere. Without greenhouse gases the temperature of the earth’s atmosphere would be about minus 19°C. The proportionate impact of each of the greenhouse gases on atmospheric warming is approximately as follows: 78 per cent from water vapour, 20 per cent from carbon dioxide, and 2 per cent from the other gases. Of the carbon dioxide in the atmosphere, up to 5 per cent is the result of burning fossil fuels. What this translates into is that 0.45 per cent of the greenhouse warming in a particular year is the result of human activity. Or expressed in another way, 99.55 per cent of the greenhouse effect has nothing to do with carbon dioxide emissions caused by humans. It’s widely acknowledged that partly as a result of human activity atmospheric carbon dioxide levels have increased, but as Carter points out the impact of this increase is disputed. For one thing our understanding of important processes like the exchange of carbon dioxide between the atmosphere and the oceans remains limited. But the context is clear, for:

even if human emissions were to be reduced to zero, the difference would be lost among other uncertainties in the global carbon budget. What is presently missing from the public debate, then - and it is not provided by computer model outputs, either - is an appreciation of both the small scale (in context) of human emissions, and the range of uncertainty in the carbon budget.

Uncertainty, and the limits of our knowledge of climate change is a constant theme of Carter’s book. What we do know is that the climate is constantly changing, and that the United Nations Intergovernmental Panel on Climate Change has been unable to demonstrate that anything that has so far happened to the earth’s temperature is not part of normal climatic variation.

Carter’s position on climate change can be summarised as follows:

There is unanimous agreement that human activities can affect climate at local scale; summed across the globe, these local affects may have a measurable effect on global climate; for the period of the instrumental record (say the last 100 years), however, climate change has proceeded at rates that lie within previous natural rates and magnitudes, and any anthropogenic effect cannot be distinguished from the noise and natural variation in the system.

There are few people in the world better able to marshal the evidence on climate change than Professor Bob Carter. He’s an Emeritus Fellow of the Institute of Public Affairs and one of the world’s leading climate change ‘sceptics’. His qualifications include a degree in geology from Otago University, and a PhD in palaeontology from Cambridge University, and he’s taught at Otago University, the University of Adelaide, and James Cook University. Famously, Carter was a witness, against the scientific might of the UK’s Meteorological Office, in the London High Court case which identified nine major errors in Al Gore’s film An Inconvenient Truth.

Climate: The Counter Consensus is one of the very best expositions of both the science and the politics of climate change yet written. It can serve as an outstanding introduction to the issue of climate change, and as an accurate and up-to-date summary of the latest research. It includes a discussion of Climategate and the Copenhagen Conference. The range of scholarship that Professor Carter has mastered is astonishing. The language is clear and simple, but never over-simplified.

At the end of the book Carter asks the question ‘how did it come to this?’ How did we get to the sort of
the situation whereby in 2006 the former president of the Royal Society, Robert May told a meeting of BBC journalists and executives ‘that the science supporting global warming alarm was so certain that it was the BBC’s public duty to cease providing airtime to alternative viewpoints.’ How did we get to the position whereby policymakers around the world have been dictated to by a handful of scientists who have shown themselves willing to fabricate evidence, destroy original data, and defeat public scrutiny? How did we get to a situation whereby one of Australia’s two major political parties is demanding a substantial reduction in the nation’s standard-of-living which would make practically zero contribution to limiting the increase in global temperature?

In a nutshell, according to Carter what’s happened is the result of ‘noble cause corruption’, a modern political disease that has been analysed in depth by Tasmania’s Professor Aynsley Kellow in his book Science and Public Policy. When belief in moral righteousness overwhelms dispassionate and disinterested research, noble cause corruption takes hold. The significance of Kevin Rudd calling climate change a ‘moral challenge’ is that he was implying that anyone who disagreeing with him was not just wrong, they were immoral. Claims to a superior morality have little to do with science.

Vaclav Klaus, the president of the Czech Republic is quoted on what happens when noble cause corruption is turned into a political movement:

As someone who lived under communism for most of my life I feel obliged to say that the biggest threat to freedom, democracy, the market economy and prosperity at the beginning of the 21st century is not communism or its various softer variants. Communism (has been) replaced by the threat of ambitious environmentalism...

Man made climate change has become one of the most dangerous arguments aimed at distorting human efforts and public policies in the whole world.

There’s much about the science of climate change in Carter’s book that challenging and thought-provoking. But perhaps what gives the work a unique importance is that Carter is willing to also examine the socio-political pathology that now surrounds Australian public policy on climate change. And he’s willing to be more than a critic—he’s willing to chart a way forward through what he terms ‘Plan B: a fresh approach’.

Recall that the public argument over climate policy in Australia has already weakened the position of one Australian prime minister (Howard), toppled two successive leaders of the opposition (Nelson and Turnbull), helped to topple another prime minister (Rudd) and elevated another opposition leader to his current position (Abbott). Maybe a fresh approach might just be useful.

Carter’s Plan B, also espoused by Nigel Lawson in the UK, is a classic no-regrets policy that is both cost-effective and politically feasible. It is that we acknowledge the very real dangers of natural climate change, and plan so as to minimize the impacts of future climate-related disasters by better preparation, and by adapting to such events—which include floods, storms, droughts and bushfires, as well as longer term climate trends—as and when they occur. As Carter concludes:

It is … time to move away from stale ‘he-says-she-says’ arguments about whether human carbon dioxide emissions are causing dangerous warming, and on to designing effective policies of hazard management for all climate change, based on adaptation responses that are tailored for individual countries or regions. The key issue on which all scientists agree is that natural climate change is real, and every year brings new examples that exemplify the substantial human and environmental damage that it can cause. By their very nature, strategies that can cope with the dangers and vagaries of natural climate change will readily cope with human caused change too should it ever become manifest.